## Heart-Shaped Coil

This is a model I designed and folded back in 2016. It is made from the same kind of units as Single-Module Modular Heart. Any number of units can be used si...

This page lists modular origami models made from a small number of units (no more than 12).

This is a model I designed and folded back in 2016. It is made from the same kind of units as Single-Module Modular Heart. Any number of units can be used si...

Another simple model in which a cube is built from just two units. See also: Two-Unit Cube I.

This is a very simple modular origami design I recently came up with when revisiting my Oxi unit from a few years ago. Given the simplicity of this design, I...

Variant B of my Star Chaos. Modular origami model from 6 units. Duo paper courtesy of a friend.

Star Deimos, another of my simple modular origami star designs. There is a color change in the center of the model, and the six-fold symmetry allows for seve...

Crown of Thorns: modular origami from 8 units. Each unit is from an 8:1 rectangle of paper and all units can be precreased as a single square only to be cut ...

An octagonal modular star. Own design, folded from Harmony paper.

Yet another variant of Star Ananke. Variants of this design were designed independently by myself and by others before me: Wei Fu, and Robin Glynn (with mino...

This variant of Star Ananke features an additional hexagon in the center of the model. It’s a small change in the individual unit, but it makes connecting th...

This is the front of Star Ananke, variant D. The basic variant (A) was designed independently by myself and by others before me: Wei Fu, and Robin Glynn (wit...

This is the back side of Star Ananke (variant D). The basic variant (A) was designed independently by myself and by others before me: Wei Fu, and Robin Glynn...

A modification (variant C) of Star Ananke. The basic variant (A) was designed independently by myself and by others before me: Wei Fu, and Robin Glynn (with ...

Modular origami stars are quite addictive: I set out to create just one simple model for a workshop and before I knew it, I had about a dozen different desig...

A modification (variant B) of Star Ananke. The basic variant (A) was designed independently by myself and by others before me: Wei Fu, and Robin Glynn (with ...

As part of preparations for my presentation and workshop on contemporary origami, I set out to design a simple modular star which I could teach in the worksh...

A Greek meander pattern folded as modular origami. The bent frame technique is the “Thoki Yenn style” which I also employed in a number of other models, for ...

A single molecule of my Maltese Cross Tessellation, which is closely related to the Cross Pattee Tessellation presented in the Coat of Arms of Rzeszów model....

A modular version of this picture frame. Folded from 4 units, each from 1:2 paper.

This heart is made from a single module which is a modification of 90-degree unit (independently discovered by me and others), so it’s like a modular design ...

In this assembly method, each of the cube’s faces is made of two modules which are both attached to both perpendicular modules in the same way. Together with...

This is about as simple a model as it gets (just 6 units).

I came up with the idea of connecting Hydrangeas to form a modular origami design independently, then found out Meenakshi Mukerji had published it in her boo...

This is a modular cube made of six Square Weave Tessellations. The connection method is mine, the authorship of the Square Weave Tessellation seems to be dis...

This is the simplest of Robert J. Lang’s polypolyhedra. A more descriptive name of this model is four intersecting triangles, or 4 × 3 × 1 polypolyhedron.

Cube from 12 modules: 6 × D18, 6 × A1.

This model demonstrates how Building Block Units can be modified to form rectangular rather than square faces. Just like the cube, this model uses 12 modules...

Cube from 12 modules: 6 × D9, 6 × A1.

The result of using the sunken variant of PVM Vertex Unit is a cube with four vertices replaced by inverted pyramids.

Normally, Toshie’s jewel is made from Sonobe units, but this one is made from StEM units instead.

This model (first from the left) is compared here with some other simple polyhedra folded from the same kind of module. Note how the tetrahedron looks almost...

This model (first in bottom row) is shown compared to other models folded from SEU units made from 2:1 and square paper (top and bottom row, respectively). N...

This model (first in top row) is shown compared to other models folded from SEU units made from 2:1 and square paper (top and bottom row, respectively). Note...

This ring can also be worn as a headband. It uses a non-standard way of connecting the modules. Any even number of modules can be connected this way, though ...

This model (first from the right, top row) is compared here with some other simple polyhedra folded from the same kind of module. The two octahedra demonstra...

This model (first from the right, bottom row) is compared here with some other simple polyhedra folded from the same kind of module. The two octahedra demons...

This model (last in bottom row) is shown compared to other models folded from SEU units made from 2:1 and square paper (top and bottom row, respectively). No...

This model (last in top row) is shown compared to other models folded from SEU units made from 2:1 and square paper (top and bottom row, respectively). Note ...

This model (second from the left) is compared here with some other simple polyhedra folded from the same kind of module.

This model (second in bottom row) is shown compared to other models folded from SEU units made from 2:1 and square paper (top and bottom row, respectively).

This model (second in top row) is shown compared to other models folded from SEU units made from 2:1 and square paper (top and bottom row, respectively).

I folded this business card cube from Warsaw public transport tickets rather than from business cards. 12 modules: 6 for the body and 6 for the coating.

This particular model is made from 3 modules, but any number of modules from 2 upwards can be used to create similar models. The only limitation is paper’s t...

A level-1 Koch snowflake is just a simple hexagonal star, and this is the way of connecting the Trimodule units originally suggested in Nick Robinson’s instr...