Cubes and Cuboids


Models of this type are also automatically listed in: abstract, balls and polyhedra, geometric, mathematical object More restrictive types: modular cubes and cuboids, single-sheet cubes and cuboids

Cubes and cuboids get their own category due the large number of designs.

This page lists models of a single type. You might be interested in folding instructions instead.
Cube (Penultimate Unit)

Cube (Penultimate Unit)

A cube made from Penultimate Unit, designed by Robert Neale. These units are very simple to fold and very versatile.

Cut Surfaces of a Cube (CFW 339)

Cut Surfaces of a Cube (CFW 339)

This interesting model by Shuzo Fujimoto represents a cube with a corner cut off. Depending on the proportions of the paper strip used, the cut surface is cl...

Two-Unit Cube III

Two-Unit Cube III

Yet another approach to making a cube from two identical units. This design is paper-effective, and looks very clean from the top and the sides. Looking at t...

Heart, Ladybug, and Mushroom on BBU Cube

Heart, Ladybug, and Mushroom on BBU Cube

This model is just a friendly reminder that almost any tessellation can be transformed into a BBU tile, and combined with other tiles to create 3D shapes wit...

Fujimoto Cube

Fujimoto Cube

This cube, folded from a single square, is one of Shuzo Fujimoto’s most famous designs. Not only is the model very firm, but the folding sequence is a master...

Cube (BBU E7)

Cube (BBU E7)

Another cube from BBU-s: 6 × E7, 6 × D4 6 × A1.

Two-Unit Cube II

Two-Unit Cube II

Another simple model in which a cube is built from just two units. See also: Two-Unit Cube I.

Two-Unit Cube I

Two-Unit Cube I

This is a very simple modular origami design I recently came up with when revisiting my Oxi unit from a few years ago. The unit has folded edges on one side ...

Hydrangea Cube (Harmony paper)

Hydrangea Cube (Harmony paper)

Shuzo Fujimoto’s Hydrangea can be used as a modular unit. The method was first published by Meenakshi Mukerji and then reinvented independently by myself. I ...

Lelum Cube

Lelum Cube

A modified version of Lelum Polelum Cube where one out of each pair of flaps is hidden.

Lelum Polelum Cube

Lelum Polelum Cube

A Cube from a unit I recently designed and later learned that was earlier designed independently by Saburo Kase. More details in the unit’s description.

Mesos Logo (Cube-Hexagon Illusion)

Mesos Logo (Cube-Hexagon Illusion)

This is the logo of Apache Mesos (cluster management software) rendered in origami. A colleague at work suggested I try designing this object in origami afte...

Lotus Cube

Lotus Cube

Lotus Cube, made from a variant of my BBU (Building Block Units). Even though it is possible to make a cube from just 6 lotus BBU units, such an assembly is ...

Coaster Cube

Coaster Cube

This cube is made from a slightly modified variant of my Woven Slit Module (WSM). 36 units are used (6×4 = 24 for the faces and 12 for the edges), made from ...

Cube from Recursive Four-Sink Base

Cube from Recursive Four-Sink Base

This cube is made from six units, each of which is a recursive four-sink base modified for use as a module.

Fractal Pinwheel Cube

Fractal Pinwheel Cube

This is an example of using my Fractal Pinwheel as a modular unit. Due to small size, there’s only one level so the fractalness is not so clearly visible.

Cube (2:1 paper, slits outside)

Cube (2:1 paper, slits outside)

In this assembly method, each of the cube’s faces is made of two modules which are both attached to both perpendicular modules in the same way. Together with...

Adjustable Cube

Adjustable Cube

This cube is a mechanical toy. Its size can be adjusted: the cube can grow or shrink by a factor of about two. It starts out as a cube with a pattern resembl...

Knobby Cube

Knobby Cube

Another combination of Building Block Units and tessellations, this time Fujimoto’s Clover Folding, folded without the decorative margin. 18 modules: 6 × BB...

Square Weave Cube

Square Weave Cube

This is a modular cube made of six Square Weave Tessellations. The connection method is mine, the authorship of the Square Weave Tessellation seems to be dis...

Hydrangea Cube

Hydrangea Cube

I came up with the idea of connecting Hydrangeas to form a modular origami design independently, then found out Meenakshi Mukerji had published it in her boo...

Clover Cube

Clover Cube

This model is a combination of Building Block Units and Fujimoto’s Clover Folding. The models amounts to 18 units, 12 of which are BBUs (6 × D10 variant, 6 ×...

Rectangular Cuboid

Rectangular Cuboid

This model demonstrates how Building Block Units can be modified to form rectangular rather than square faces. Just like the cube, this model uses 12 modules...

Cube (BBU E10)

Cube (BBU E10)

Due to the E10 tile’s small flaps, it can’t be directly attached to the flaps of inner A1 tiles. An additional “sizing” layer of A2 tiles is needed for prope...

Cube (BBU D9)

Cube (BBU D9)

Cube from 12 modules: 6 × D9, 6 × A1.

Large Cube

Large Cube

This cube uses PVM Edge Connector Units to create extra distance between the Vertex Modules.

Cube from Sunken Vertex Units

Cube from Sunken Vertex Units

The result of using the sunken variant of PVM Vertex Unit is a cube with four vertices replaced by inverted pyramids.

Cube (StEM)

Cube (StEM)

This model (second from the left) is compared here with some other simple polyhedra folded from the same kind of module.

Cube (SEU Sonobe)

Cube (SEU Sonobe)

This model (second in bottom row) is shown compared to other models folded from SEU units made from 2:1 and square paper (top and bottom row, respectively).

Cube (SEU from 2:1 paper)

Cube (SEU from 2:1 paper)

This model (second in top row) is shown compared to other models folded from SEU units made from 2:1 and square paper (top and bottom row, respectively).

Ticket Cube

Ticket Cube

I folded this business card cube from Warsaw public transport tickets rather than from business cards. 12 modules: 6 for the body and 6 for the coating.